Forced expression of myocardin is not sufficient for induction of smooth muscle differentiation in multipotential embryonic cells.
نویسندگان
چکیده
OBJECTIVE Myocardin, a coactivator of serum response factor, has been shown to be required for expression of multiple CArG-dependent smooth muscle cell (SMC) marker genes. The aim of the present study was to determine whether myocardin alone is sufficient to induce SMC lineage in multipotential stem cells as evidenced by activation of the entire SMC differentiation program. METHODS AND RESULTS Overexpression of myocardin induced only a subset of SMC marker genes, including smooth muscle (SM) alpha-actin, SM-myosin heavy chain (MHC), SM22alpha, calponin, and desmin in A404 SMC precursor cells, whereas expression of smoothelin-B, aortic carboxypeptidase-like protein, and focal adhesion kinase-related nonkinase, whose promoters lack efficacious CArG elements, was not induced. Similar results were obtained in cultured SMCs, 10T1/2 cells, and embryonic stem cells. Moreover, myocardin inappropriately induced expression of skeletal and cardiac CArG-dependent genes in cultured SMCs. Stable overexpression of dominant-negative myocardin in A404 cells resulted in impaired induction of SM alpha-actin and SM-MHC by all trans-retinoic acid but had no effect on induction of smoothelin-B and aortic carboxypeptidase-like protein expression. CONCLUSIONS Taken together with previous studies, results demonstrate that myocardin is required for the induction of CArG-dependent SMC marker genes but is not sufficient to initiate the complete SMC differentiation program. We examined whether myocardin induces the entire smooth muscle cell (SMC) differentiation program. Results of the present study showed that myocardin knockdown or overexpression affected only a subset of SMC marker genes in multipotential cells, indicating that myocardin is required but not sufficient to induce SMC lineage.
منابع مشابه
Myocardin is a critical serum response factor cofactor in the transcriptional program regulating smooth muscle cell differentiation.
The SAP family transcription factor myocardin functionally synergizes with serum response factor (SRF) and plays an important role in cardiac development. To determine the function of myocardin in the smooth muscle cell (SMC) lineage, we mapped the pattern of myocardin gene expression and examined the molecular mechanisms underlying transcriptional activity of myocardin in SMCs and embryonic st...
متن کاملStem cells and their derivatives can bypass the requirement of myocardin for smooth muscle gene expression.
The Serum Response Factor (SRF) coactivator myocardin stimulates the transcription of multiple muscle genes during cardiac and smooth muscle development. Mouse embryos lacking myocardin die during the earliest stages of smooth muscle development and fail to express multiple smooth muscle marker genes in the embryonic dorsal aorta and other vascular structures. In this study, we used mutant embr...
متن کاملMyocardin Overexpression Is Sufficient for Promoting the Development of a Mature Smooth Muscle Cell-Like Phenotype from Human Embryonic Stem Cells
BACKGROUND Myocardin is thought to have a key role in smooth muscle cell (SMC) development by acting on CArG-dependent genes. However, it is unclear whether myocardin-induced SMC maturation and increases in agonist-induced calcium signalling are also associated with increases in the expression of non-CArG-dependent SMC-specific genes. Moreover, it is unknown whether myocardin promotes SMC devel...
متن کاملA novel in vitro model system for smooth muscle differentiation from human embryonic stem cell-derived mesenchymal cells.
The objective of this study was to develop a novel in vitro model for smooth muscle cell (SMC) differentiation from human embryonic stem cell-derived mesenchymal cells (hES-MCs). We found that hES-MCs were differentiated to SMCs by transforming growth factor-β (TGF-β) in a dose- and time-dependent manner as demonstrated by the expression of SMC-specific genes smooth muscle α-actin, calponin, an...
متن کاملThe serum response factor coactivator myocardin is required for vascular smooth muscle development.
Formation of the vascular system requires differentiation and patterning of endothelial and smooth muscle cells (SMCs). Although much attention has focused on development of the vascular endothelial network, the mechanisms that control vascular SMC development are largely unknown. Myocardin is a smooth and cardiac muscle-specific transcriptional coactivator of serum response factor, a ubiquitou...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Arteriosclerosis, thrombosis, and vascular biology
دوره 24 9 شماره
صفحات -
تاریخ انتشار 2004